ROTATIONALLY RESOLVED IR SPECTRA OF LiD_2^+ AND LiH_2^+

<u>CORINNA EMMELUTH</u>, CHRISTOPHER D. THOMPSON, BERWYCK L. J. POAD, and EVAN J. BIESKE, *Laser Spectroscopy Group, School of Chemistry, University of Melbourne, Parkville, VIC 3010 Australia*; GARY H. WEDDLE, *Fairfield University, Department of Chemistry, Fairfield, CT 06430 USA.*

Photodissociation infrared spectra of mass selected LiD_2^+ and LiH_2^+ have been obtained in the D-D and H-H stretch region respectively, using a tandem mass spectrometer and detecting the Li⁺ loss channel. For the first time rotationally resolved spectra of these complexes are available providing structural parameters and allowing direct comparison with theoretical data ^{*a*}. For LiD_2^+ around 100 lines of the K_a=0 \leftarrow K_a=1, and K_a=2 \leftarrow K_a=2 parallel transitions were fitted to a Watson A-reduced Hamiltonian. The analysis of the spectrum was supported by quantum chemical calculations using the program TRIATOM ^{*b*} and the potential from Gianturco *et al.* ^{*c*}. The LiD_2^+ complex was found to have T-shaped structure in agreement with theoretical predictions. An analogous analysis has been performed for the LiH_2^+ spectrum which differs from the LiD_2^+ spectrum due to larger rotational constants and an altered ortho:para ratio.

^aV. P. Bulychev, K. M. Bulanin, and M. O. Bulanin, Mol. Spec. 96, 2004, 205-216

^bJ. Tennyson, S. Miller, and C. R. Le Sueur, Comp. Phys. Comm. 75, 1993, 339-364.

^cR. Martinazzo, G. F. Tantardini, E. Bodo, and F. A. Gianturco, J. Chem. Phys. 119, 2003, 11241-11248