INVESTIGATION ON REVERSE WATER-GAS SHIFT OVER La_2NiO_4 CATALYST BY CW-CAVITY ENHANCED ABSORPTION SPECTROSCOPY DURING CH_4/CO_2 REFORMING

B.S. LIU, Department of Chemistry, Tianjin University, Tianjin 300072, P.R. China and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong; LING LI, <u>A.S.-C. CHEUNG</u>, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong; C.T. AU, Department of Chemistry and Center for Surface Analysis and Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong.

Reverse water-gas shift (RWGS) reaction over La₂NiO₄ catalyst was investigated during CH₄/CO₂ reforming by continuous wave (cw) cavity enhanced absorption spectroscopy (CEAS), a sensitive absorption technique. A cw-diode laser with wavelength in the 1.3 μ m region and an optical cavity consists of a pair of high reflectivity mirrors (0.99995) were used in the experiment. Absorption lines of the $\Delta J=0$ (Q branch) rotational transitions of the $2_0^13_0^1$ vibrational transition of CH₄ near 7510 cm⁻¹, and the J=5, $K_a=0$, $K_c=5$ to J=6, $K_a=2$, $K_c=4$ rotational transition of the $1_0^13_0^1$ vibrational transition of H₂O near 7511.29 cm⁻¹ were monitored. The results indicated that the RWGS reaction promoted the conversion of CO₂ and decreased the partial pressure of hydrogen. Our CEAS result confirms that the conversion of CO₂ is always 3-5% higher than CH₄ due to RWGS reaction. In addition, the effect of reaction temperature on RWGS was studied.

The work described here was supported by a grant from the Research Grants Council of Hong Kong SAR, China (Project No. HKU7101/02P)