THE ν_1 AND ν_6 BANDS OF DIIODOMETHANE, CH₂I₂, AROUND 3.3 MICRONS STUDIED BY HIGH-RESOLUTION FOURIER-TRANSFORM SPECTROSCOPY

J. ORPHAL, N. IBRAHIM, Laboratoire Interuniversitaire des Systémes Atmosphériques (LISA), CNRS UMR 7583, Université de Paris-XII, 91405 Créteil Cedex, France; C. E. FELLOWS, Laboratório de Espectroscopia e Laser, Instituto de Física, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.

Diiodomethane, CH_2I_2 , is an important molecule in marine photochemistry. CH_2I_2 is produced by algae¹ and its photolysis is a source for tropospheric iodine which is very reactive towards other organic species and ozone; it is also an important source for marine particle formation². CH_2I_2 is a rather heavy molecule and has low-lying vibrational modes, leading to a very dense spectrum. Its ground³ and first excited⁴ vibrational states have been studied in the past using Fourier-transform microwave spectroscopy. Very recently, quantitative infrared absorption spectra of CH_2I_2 were recorded at a spectral resolution of 0.1 cm⁻¹ as part of the PNNL database of gas-phase infrared spectra.⁵

In this paper we present the first high-resolution spectra of the ν_1 and ν_6 bands of CH₂I₂ in the 3.3 μ m region, recorded with a Bruker IFS-120 HR Fourier-transform spectrometer, using CH₂I₂ at its saturated vapour pressure at room temperature, with an absorption path of 300 cm and a spectral resolution of 0.002 cm⁻¹.

^[1] C. O'Dowd et al., Nature, 417, 632-636 (2002).

^[2] J. L. Jimenez et al., J. Geophys. Res. D, 108, 4090, doi:10.1029/2002JD002452 (2003).

^[3] Z. Kisiel et al., J. Chem. Phys., 105, 1778-1785 (1996).

^[4] Z. Kisiel et al., J. Mol. Spectrosc., 199, 5-12 (2000).

^[5] T. J. Johnson et al., Atmos. Chem. Phys. Discuss., 6, 1275-1299 (2006).