10min:
RESOLUTION OF A CONVERGENCE PROBLEM IN DIRECT-POTENTIAL-FIT DATA ANALYSES USING THE HERMAN-ASGHARIAN HAMILTONIAN.

ROBERT J. LE ROY, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; JOHN A. COXON, Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3 Canada; MICHAEL REY AND VLADIMIR G. TYUTEREV, Group de Spectrométrie Moléculaires et Atmosphérique, CNRS UMR 6089, BP 1039, F-51687, Reims Cedex 2, France.

The effective radial Schrödinger equation based on the Herman-Asgharian Hamiltonian for a diatomic molecule in a 1 Sigma state has the form

\vspace-2mm \beginequation - \frac\hbar22µ~[1 + beta(r)]~\fracd2 psiv,j(r)dr2~~ + \left$1 \left[V_\mathrmCN(r) + Delta V_\mathrmad(r) \right] + \frac \hbar22µ r2~ [1 + alpha(r)]~[J(J+1)]~\right$1 psiv,j(r) ~=~Ev,J~ psiv,j(r) \labeleq:HAham \endequation

in which beta(r) and alpha(r) represent the effects of non-adiabatic corrections to the radial and angular kinetic energy operators, respectively, and Delta V_\mathrmad (r) is the adiabatic correction to the ``clamped nuclei'' potential energy function function V_ \mathrmCN(r) . An internal convergence problem encountered when utilizing wavefunction propagator methods for direct-potential-fit diatomic data analyses using this Hamiltonian is described and corrected. Improved Hamiltonian parameters for the ground states of GaH and ArH+ will be reported.