THE ν_5 AND $2\nu_9$ BANDS OF THE ¹⁵N ISOTOPIC SPECIES OF NITRIC ACID (H¹⁵NO₃): LINE POSITIONS AND INTENSITIES

<u>A. PERRIN</u>, Laboratoire Inter Universitaire des Systemes Atmosphériques, CNRS, Université Paris 12, 61 Av du Général de Gaulle, 94010 Créteil Cedex France; R. MBIAKE, Centre de Physique Atomique et Moléculaire et Optique Quantique (CEPAMOQ), Université de Douala, B.P. 8580, Cameroun.

We present the first high resolution Fourier transform analysis of the 11 μ m bands for H¹⁵NO₃ which is the second most abundant isotopomer of nitric acid (a=0.00365). In this way the analysis of the ν_5 and $2\nu_9$ cold bands centered at 871.095 and 893.452 cm⁻¹ was performed. As for H¹⁴NO₃, these bands are significantly perturbed since rather strong resonances couple the 5¹ and 9² rotational levels. The theoretical model that we used to compute the line positions and line intensities is directly issued from the one which we used recently for H¹⁴NO₃ ^{*a*}. Actually for the H¹⁵NO₃ line positions, the Hamiltonian matrix accounts for the rather strong Fermi and the weaker Coriolis interactions linking the v=5¹ and v=9² rotational energy levels. Using this model which describes correctly the strong mixing of the 5¹ and 9² upper state energy levels, the ν_5 and $2\nu_9$ line intensities for H¹⁵NO₃ were satisfactorily computed using the ν_5 and $2\nu_9$ transition moment operators achieved previously for the ¹⁴N (main) isotopic species. In this way, the transfer of intensities from the ν_5 fundamental (and presumably strong) band to the $2\nu_9$ overtone (and presumably weak) band could be explained for H¹⁵NO₃ as it was done previously for the ¹⁴N (main) isotopic species.

^aA.Perrin, J.Orphal, J.-M.Flaud, S.Klee, G.Mellau, H.Maeder, D.Walbrodt, and M.Winnewisser, (2004), J. Mol. Spectrosc. 228, 375-391