THE ROTATIONAL SPECTRA OF THE WEAKLY BOUND He₁-C₅H₅N, He₂-C₅H₅N, and H₂-C₅H₅N COMPLEXES

<u>CHAKREE TANJAROON</u> and WOLFGANG JÄGER, *Department of Chemistry, The University of Alberta, Edmonton, T6G 2G2 Canada.*

The rotational spectra of three very weakly bound complexes, $H_1-C_5H_5N$, $H_2-C_5H_5N$, and $H_2-C_5H_5N$, have been studied using a pulsed molecular beam microwave spectroscopic method. Analysis of the rotational and ^{14}N nuclear quadrupole coupling constants of these complexes shows that all three complexes possess the perpendicular geometric configuration. In this configuration, in the dimer, H_2 bind above the aromatic plan of C_5H_5N and are displaced by less than ten degrees away from the c-axis of the pyridine monomer, toward the nitrogen atom. In the trimer, the second helium atom preferentially binds below the aromatic plan of C_5H_5N , opposite of the first helium atom. An MP2 ab initio interaction potential between H_2 and H_3 has been generated and the theoretical results are consistent with those from the experiment. The spectra, molecular structures, quadrupole coupling parameters, and interaction potentials will be discussed.

^aSupport by NSERC and an Alberta Ingenuity Postdoctoral Fellowship to CT are gratefully acknowledged.