POTENTIAL ENERGY SURFACES AND VIBRATIONAL ENERGY LEVELS OF DCCl AND HCCI IN THEIR THREE LOW-LYING STATES

HUA-GEN YU, TREVOR J. SEARS and JAMES T. MUCKERMAN, Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973-5000 USA.

We present \textit{ab initio} multi-reference configuration interaction (MRCI) calculations of potential energy surfaces of HCCI in its three low-lying electronic states (\tilde{X}^1A', \tilde{a}^3A'' and \tilde{A}^1A'') and for the spin-orbit coupling between the \tilde{X} and \tilde{a} states. The two singlet states become a degenerate $^1\Delta$ state in collinear geometries. The potential energy surfaces are interpolated from 6075 MRCI energy points. The final surfaces are slightly adjusted using a coordinate and energy scaling approach. The T_e values of the \tilde{a}^3A'' and \tilde{A}^1A'' states are computed to be 2122.0 and 12209.8 cm$^{-1}$, respectively. Vibrational energy levels of the three states of DCCl and HCCI taking into account the Renner-Teller effect and spin-orbit coupling are computed. The calculated vibronic energy levels are in good agreement with the available experimental values.

aWork at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy Sciences.