ELECTRONIC STRUCTURE AND SPECTROSCOPY OF NH+

G. J. VÁZQUEZ, and J. M. AMERO, Centro de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM), 62251 Cuernavaca, México (vaztor@fis.unam.mx).

Ab-initio SCF MRSD-CI electronic structure calculations were carried out on the NH⁺ cation. A basis set of DZ+POL quality augmented with Rydberg and bond functions was employed together with an extensive treatment of electron correlation. More than fifty electronic states of NH⁺ are reported, including doublets, quartets and sextets^a. Leading configurations, vertical ionization energies of NH, vertical excitation energies of NH⁺ and potential energy curves are reported. Spectroscopic properties calculated for the five known bound electronic states of NH⁺ (X² Π , a⁴ Σ ⁻, A² Σ ⁻, B² Δ , C² Σ ⁺) are found in good agreement with experiment.

We find four new bound electronic states of NH⁺, namely, three doublets $(^2\Delta, ^2\Sigma^+, ^2\Sigma^+)$ and one sextet $(^6\Pi)$. A fifth bound electronic state, a quartet $(^4\Pi)$ which was reported schematically in an early SCF study^b is calculated for the first time over a wide range of N–H distances. Adiabatic excitation and ionization energies and spectroscopic constants are also reported for these five states^c, as well as vertical de–excitation energies for emission from the novel states to lower lying bound states. The potential energy curve of NH²⁺(X¹Σ⁺) was also calculated to aid in the discussion of a Rydberg bound state of NH⁺. It is hoped that the information reported in the present work will be helpful in guiding the laboratory and/or astrophysical search for these species.

^aJ. M. Amero, G. J. Vázquez, Int. J. Quantum Chem., 101, 396 (2005).

^bH. P. D. Liu, G. J. Verhaegen, J. Chem. Phys., **53**, 735 (1970).

^cJ. M. Amero, G. J. Vázquez, *Int. J. Quantum Chem.*, **99**, 353 (2004).