HIGH-RESOLUTION NEAR-INFRARED SPECTROSCOPY OF He/N2/H2 POSITIVE-COLUMN PLASMAS

JENNIFER L. GOTTFRIED, CHRISTOPHER P. MORONG, and TAKESHI OKA, Department of Chemistry, Department of Astronomy & Astrophysics, and the Enrico Fermi Institute, University of Chicago, Chicago, IL 60637.

Like its isoelectronic cousins BH_2^- and CH_2 , the amidogen cation NH_2^+ has a quasilinear ground state \tilde{X}^3B_1 with a low barrier to linearity (155 cm⁻¹) and metastable excited electronic states \tilde{a}^1A_1 and \tilde{b}^1B_1 that become degenerate (¹ Δ) at linearity. In addition to its theoretical interest (due to the quasilinearity and the Renner effect), NH_2^+ is one of the most fundamental molecular ions that exist abundantly in laboratory plasmas containing hydrogen and nitrogen. Despite this, only two high-resolution experimental detections of NH_2^+ have been reported (the observation of the antisymmetric N-H stretch^{*a*} at 3360 cm⁻¹, and four hot bands^{*b*} from 2900-3500 cm⁻¹).

In an attempt to observe the predicted near-infrared electronic absorption spectrum of NH_2^+ ,^c we have recently obtained new spectra of positive ions in a liquid-nitrogen-cooled positive column He/N₂/H₂ plasma. The spectra were recorded using a high-resolution, high-sensitivity spectrometer based on a Ti:sapphire laser (11,000-13,000 cm⁻¹) and incorporating velocity modulation, phase modulation with heterodyne detection, noise subtraction, and optical multi-passing. The observation and assignment of the spectra is complicated by the presence of thousands of lines from the $A^2\Pi_u - X^2\Sigma_q^+$ system of N₂⁺. We will report the results of our analysis of the new spectra.

^aM. Okumura, B. D. Rehfuss, B. M. Dinelli, M. G. Bawendi, and T. Oka, J. Chem. Phys. 90, 5918 (1989).

^bY. Kabbadj, T. R. Huet, D. Uy, and T. Oka, J. Mol. Spectrosc. 175, 277 (1996).

^cG. Osmann, P. R. Bunker, P. Jensen, and W. P. Kraemer, J. Mol. Spectrosc. 186, 319 (1997).