IMPOSING A MECHANICAL MODEL ON AN IRREGULAR ELECTRONIC STATE: THE $A^{1}\Sigma^{+}$ STATE OF AgH

<u>ROBERT J. LE ROY</u>, DOMINIQUE R.T. APPADOO, KEVIN ANDERSON, ALIREZA SHAYESTEH, IOULI E. GORDON AND PETER F. BERNATH, *Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.*

Almost since its first observation in 1925, it has been clear that the $A^{1}\Sigma^{+}$ state of AgH is irregular, in that its level energy patterns and isotope effects resisted conventional systematic description.^{*a*} A proposal by Gerö and Schmid^{*b*} that this irregular behaviour was due to perturbation by the nearby $B^{1}\Sigma^{+}$ state was disputed by Learner,^{*c*} who argued that the problem was due to an avoided crossing which gives rise to a "shelf" on the outer part of the potential well. Recent *ab initio* studies by Witek *et al.*^{*d,e*} suggest that the irregular behaviour is actually due to two avoided crossings, and that the resulting effective potential has what we call "anti-shelf" behaviour which is qualitatively different than that described by Learner.^{*c*} The present paper describes our efforts to determine an accurate effective potential function and delineate the degree and nature of residual non-mechanical behaviour for this state from a combined-isotopologue analysis of all available experimental data.

^a E. Bengtsson and E. Olsen, Z. Physik **72**, 163 (1931).

^b L. Gerö and R. Schmidt, Z. Physik 121, 459 (1943).

^c R.C.M. Learner, Proc. Roy. Soc. (London) A 269, 327 (1962).

^d H.A. Witek, T. Nakijima and K. Hirao, J. Chem. Phys. 113, 8015 (2000).

^e H.A. Witek, D.G. Fedorov, K. Hirao, A. Viel and P.-O. Widmark, J. Chem. Phys. 116, 8386 (2002).