OPTICAL ZEEMAN SPECTROSCOPY OF THE $A^2\Pi/B^2\Sigma^+$ - $X^2\Sigma^+$ BAND SYSTEMS OF CALCIUM MONOHYDRIDE, CaH^a

<u>JINHAI CHEN</u>, JAMIE GENGLER, and TIMOTHY STEIMLE, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287; JOHN M. BROWN, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ.

Numerous branch features in the (0,0) band of the $B^2\Sigma^+ - X^2\Sigma^+$ system and in the (0,0) band of the $A^2\Pi - X^2\Sigma^+$ system of calcium monohydride, CaH, have been recorded at near the natural line width limit in the presence of a tunable static magnetic field of up to 1200 Gauss. The observed Zeeman induced shifts were successfully modeled using the traditional effective Hamiltonian to account for the $\Delta v=0$ interaction and explicit inclusion of the interaction matrix elements for the perturbations between the (v=1) $A^2\Pi$ and (v=0) $B^2\Sigma^+$ states. A comparison is made with the analysis of the Zeeman effect of the (0,0) $B^2\Sigma^+ - X^2\Sigma^+ R_1$ (0.5) branch feature^{b,c}.

^aFunded by NSF-Experimental Physical Chemistry

^bB. Friedrich, J.D. Weinstein, R. deCarvalho, and J.M. Doyle, J. Chem. Phys. 110, 2376-2383 (1999).

^cR. deCarvalho, J.M. Doyle, B. Friedrich. T. Guillet, J. Kim, D. Patterson, and J.D. Weinstein, Eur. Phys. J. D 7, 289-309 (1999).