MICROWAVE AND AB INITIO STUDIES OF THE XE-CH4 VAN DER WAALS COMPLEX

QING WEN AND WOLFGANG JÄGER, Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.

We previously reported on experimental and theoretical studies of the Xe-N₂ complex as a test case to investigate Xe-molecule interaction potentials.^{*a*} Here, we present our work on the Xe-CH₄ complex, which is another appealing test case because of the high symmetry of methane monomer and its anticipated near free internal rotation. As a starting point, an *ab initio* potential energy surface was constructed at the CCSD(T) level of theory. The recently developed aug-cc-pVQZ-PP basis set was used for the xenon atom and the aug-cc-pVTZ basis set for the other atoms. The basis sets were supplemented with bond functions. Dipole moments were also calculated at various configurations. The reliability of the *ab initio* calculations was tested against the experimental rotational transition frequencies. Rotational transitions were measured using a pulsed-nozzle Fourier transform microwave spectrometer. Transitions within three internal rotation states, namely the j=0, K=0; j=1, K=0; and j=2, K=1 states, were measured and assigned. Nuclear quadrupole hyperfine structures due to the presence of ¹³¹Xe (I=3/2) were detected and analyzed. It was found that the j=1, K=0 state is perturbed by a Coriolis interaction with a nearby j=1, K=1 state. For isotopomers containing CH₃D and CHD₃, the j=2 states are no longer metastable and could not be observed. The spectroscopic results were used to derive information about the molecular structure and intermolecular dynamics of the Xe-CH₄ complex.

^aQ. Wen and W. Jäger, **paper WH09**, 59th International Symposium on Molecular Spectroscopy, Ohio State University, Columbus, Ohio, USA, June 21 – 25, 2004.