THE INFRARED SPECTRUM OF CH₂⁺ REVISITED

<u>CHRISTOPHER F. NEESE</u> and TAKESHI OKA, Department of Chemistry, Department of Astronomy & Astrophysics, and the Enrico Fermi Institute, The University of Chicago, Chicago IL, 60637, USA.

The first reported spectrum of CH_2^+ was the $K_a=0$ series of the ν_3 fundamental, recorded by our group in 1991.^a Subsequently, the $K_a=1$ series was observed in 1993 and later analyzed by Jensen et al.^b These spectra were recorded in liquid-nitrogen-cooled positive-column discharges of CH_4 , H_2 , and He. In the 1993 spectrum, absorption lines from CH_2^+ were discriminated from those of CH_3^+ by recording the spectrum of a discharge without H_2 . In the absence of H_2 , the CH_2^+ lines grew stronger and the CH_3^+ lines weakened. In the 1993 spectrum, weak lines attributed to CH_2^+ with $K_a=2$ were observed. The $K_a=2$ lines were significantly weaker than the $K_a=1$ lines because of a reduced Boltzman factor ($A\approx67$ cm⁻¹). The assignment of these lines was stalled because of their low intensity, the complicated spectral pattern of CH_2^+ (due to the combined effects of quasi-linearity and the Renner-Teller effect), and interfering absorption lines of CH_3^+ , $C_2H_2^+$, and $C_2H_3^+$.

Two new developments have led us to revisit the infrared spectrum of CH_2^+ , with the goal of assigning $K_a \ge 2$ lines. The first development is the observation of the $\tilde{A}(0,3,0)^3 \leftarrow \tilde{X}(0,0,0)^2$ electronic band of CH_2^+ . This band provides combination differences that can be directly compared with the ν_3 fundamental. The second development is the discovery of a new plasma chemistry — allene and He in a water-cooled positive-column discharge — that appears to be selective for CH_2^+ . This new chemistry allows us to confirm CH_2^+ as the carrier of previously observed lines. This paper will discuss progress made in the assignment of the infrared spectrum of CH_2^+ in light of these new developments.

^aM. Rösslein, C. M. Gabrys, M.-F. Jagod, and T. Oka, J. Mol. Spectrosc. 153, 738 (1992).

^bP. Jensen, M. Brumm, W. P. Kraemer, and P. R. Bunker J. Mol. Spectrosc. 172, 194 (1995).

^cJ. L. Gottfried and T. Oka, *J. Chem. Phys.* **121**, 11527 (2004).

^dSee talk entitled "The Near-Infrared Spectrum of CH₂⁺."