THE NEAR-INFRARED SPECTRUM OF CH₂⁺

<u>CHRISTOPHER F. NEESE</u>, JENNIFER L. GOTTFRIED, and TAKESHI OKA, *Department of Chemistry*, *Department of Astronomy & Astrophysics, and the Enrico Fermi Institute, The University of Chicago, Chicago IL, 60637, USA*.

The molecular ion CH_2^+ is of special theoretical interest because it is both quasi-linear and exhibits a strong Renner-Teller interaction between its ground and first-excited electronic states. At linearity, the ground state is a ${}^2\Pi_u$ state that splits into \tilde{X}^2A_1 and \tilde{A}^2B_2 states as the molecule bends. The \tilde{A} state is linear, while the \tilde{X} is quasi-linear with a barrier to linearity of only 1089 cm⁻¹. Thus, only the ground vibrational state is bound by the barrier to linearity.

The spectrum of CH_2^+ in the region 11,000–13,000 cm⁻¹ has been recorded with our Ti:sapphire laser spectrometer. This spectrometer couples velocity modulation with heterodyne detection for near shot-noise-limited sensitivity. Since our initial letter on this spectrum,^{*a*} we have selectively rescanned portions of this spectrum with improved signal-to-noise. As a result, we have been able to assign the $\tilde{A}(0,3,0)^3 \leftarrow \tilde{X}(0,0,0)^2$ band and detect the $\tilde{X}(0,9,0)^2 \leftarrow \tilde{X}(0,0,0)^1$ band, whose assignment is in progress. A more detailed analysis of the entire spectrum, including spin splitting, is underway.

^aJ. L. Gottfried and T. Oka, J. Chem. Phys. 121, 11527 (2004).