There are two major competing models for massive star formation: accretion via disks and coalescence of low-mass (proto)stars. The presence of well-defined disks around massive protostars may be the most convincing observational evidence to support the accretion model. We observed a massive protostar in the H13CO$^+$ and H13CN (1−0) lines and 3-mm continuum at 4$^\prime$ resolution using the BIMA array, and detected a well-elongated dense condensation in the NE-SW direction. Dust continuum emission peaks around its center where a bright (∼4×104 L_\odot) IRAS point source is located. The condensation crosses the associated outflow axis at about 50$^\circ$. A large (∼15 km s$^{-1}$ pc$^{-1}$) velocity gradient exists along the major axis, suggesting rotation. The condensation has a size of 50000 AU and a mass of 400 M_\odot, which are very similar to those of the circumstellar disk recently detected around NGC 7538S. Therefore, this structure seems to be a circumstellar disk around a massive protostar, although further studies are required to confirm this.