THE PURE ROTATIONAL SPECTRUM OF THE CoS RADICAL (X⁴ Δ_i): CONTINUED STUDIES IN MONOLIGATED COBALT SPECIES

M. A. FLORY, S. K. McLAMARRAH, and L. M. ZIURYS, Department of Chemistry, Department of Astronomy, Steward Obsevatory, University of Arizona, Tucson, AZ 85721.

The sub-millimeter wave spectrum of the CoS radical has been observed in the frequency range 350-540 GHz using direct absorption techniques. This work is the first spectroscopic study of this molecule. Cobalt vapor was reacted with CS₂ to produce CoS. Rotational transitions from three spin-components in the radical's X ${}^{4}\Delta_{i}$ ground state have been recorded thus far, and magnetic hyperfine splittings due to the 59 Co nucleus (I = 7/2) have been resolved. We are continuing our search to identify the fourth spin-component. Transitions from the Co³⁴S isotopomer were also measured, as well as several arising from excited vibrational levels. There is no evidence of λ -doubling in the lower three spin-components ($\Omega = 7/2$, 5/2, 3/2). The hyperfine pattern in the various spin-orbit components is somewhat irregular, particularly the $\Omega = 3/2$, suggesting some mixing from nearby excited electronic states. The preliminary data have been fit with a case (a) Hamiltonian, and spectroscopic constants have been determined. The most current results of this study will be presented.