TIME-RESOLVED INFRARED DIODE LASER SPECTROSCOPY OF THE ν_1 BAND OF THE FeNO RADICAL PRO-DUCED BY THE ULTRAVIOLET LASER PHOTOLYSIS OF Fe(CO)₂(NO)₂

SEIKI IKEDA, MOTOKI NAKASHIMA and KEIICHI TANAKA, Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki, Higashiku, Fukuoka, 812-8581 JAPAN.

Rovibrational transitions of the ν_1 band (N-O stretch) of the FeNO radical were observed in the 1750-1780 cm⁻¹ region. The FeNO radical was produced by 193 nm excimer laser photolysis of Fe(CO)₂(NO)₂ and the transient absorption signal was detected by time-resolved infrared diode laser spectroscopy.

More than 40 lines were assigned to the ν_1 fundamental band of the $\Omega = 5/2$ spin component, together with ten Q-branch lines (J = 2.5 - 11.5) in the 1760 cm⁻¹ region, to confirm the electronic ground state to be $X^2 \Delta_i$. Effective molecular constants for the $\Omega = 5/2$ spin component, including the band origin ν_0 (1767.26093(38) cm⁻¹), the rotational constant B (4610.17754(93) MHz) and the centrifugal distortion constant D (1.17003(47) kHz), were derived from a least squares fitting of the observed transitions. The average bond length $r_{\text{Co-N}}$ between Co and N was calculated to be 1.621 Å from the rotational constant B_0 assuming $r_{\text{N-O}} = 1.186$ Å as given by *ab initio* calculation^{*a*}. The ν_1 hot band lines originated from the ν_2 (Fe-N-O bending; 308 cm^{-1 *a*}) vibrationally excited state were also observed. Pure rotational lines of FeNO were also observed by the millimeter wave spectroscopy with the UV photolysis of Fe(CO)₂(NO)₂^{*b*}.

^aM. Zhou and L. Andrews, J.Phys.Chem.A, **104**, 3915 (2000)

^bMicrowave session in this symposium.