AIR-BROADENED LINE WIDTHS AND SHIFTS IN THE ν_3 BAND OF 18O$_3$ AT TEMPERATURES BETWEEN 160 AND 300 K

M. A. H. SMITH, C. P. RINSLAND, Science Directorate, NASA Langley Research Center, Hampton, VA 23681-2199; V. MALATHY DEVI, D. CHRIS BENNER, Department of Physics, The College of William and Mary, Williamsburg, VA 23187-8795; and A. M. COX, New Horizons Governor's School for Science and Technology, Hampton, VA 23666 and Poquoson High School, Poquoson, VA 23662.

The 9.6-μm bands of O$_3$ are used by many remote-sensing experiments for retrievals of terrestrial atmospheric ozone concentration profiles. Line parameter errors can contribute significantly to the total errors in these retrievals, particularly for nadir-viewing. We have used the McMath-Pierce Fourier transform spectrometer at the National Solar Observatory on Kitt Peak to record numerous high-resolution infrared absorption spectra of O$_3$ broadened by various gases at temperatures between 160 and 300 K. Over 25 air-broadened spectra were analyzed simultaneously using a multispectrum nonlinear least squares technique to determine Lorentz pressure-broadening and pressure-induced shift coefficients along with their temperature dependences for selected P- and R-branch transitions in the ν_3 fundamental band of 18O$_3$. We have compared the present results with other measurements reported in the literature for O$_3$ broadened by air or by N$_2$.
