Structural parameters for ETHYNYLFERROCENE and other singly-substituted ferrocenes have been determined, using microwave spectroscopy and DFT calculations. For ethynylferrocene twenty-four rotational constants have been determined by fitting the measured frequencies of a- and b- type transitions, for various isotopomers. The distance between the Fe-atom and the center of the cyclopentadienyl ring is 1.648(5) Å and the distance between the carbon atoms of the cyclopentadienyl ring is \( r_{CC} = 1.432(2) \) Å. The ethynyl group is bent away from the Fe-atom and out of the plane of the adjacent carbon atoms by 27.5°. The DFT calculations and analyses of fits including \(^{13}C\) isotopic substitution data indicate that the molecule is in an eclipsed conformation. Trends in microwave experimental values for the distance between the Fe-atom to the center of the cyclopentadienyl ring for a series of substituted ferrocenes have been analysed. This analysis provides an estimate of the gas phase distance between the Fe-atom to the center of the cyclopentadienyl ring for ferrocene of 1.65(1) Å.

\(^{a}\)Supported by THE NATIONAL SCIENCE FOUNDATION CHE0304969