SEPARATION AND CONVERSION OF NUCLEAR SPIN ISOMERS OF ETHYLENE

Z.-D. SUN, Department of Physics, Toyama University, 930-8555, Japan; Department of Physics, Yantai University, 264005, P. R. China; K. TAKAGI, S. YAMADA, H. TANAKA, and F. MATSUSHIMA, Department of Physics, Toyama University, 930-8555, Japan.

The separation and conversion of nuclear spin isomers with A_g , B_{1g} , B_{2u} , and B_{3u} symmetry of normal ethylene (C₂H₄) have been investigated by a newly assembled experimental setup in the first case studied so far for a planar, asymmetric-top polyatomic molecule that has four nuclear spin isomers with the D_{2h} symmetry group. One of the nuclear spin isomers of C₂H₄ is first separated using the 10P44 CO₂ laser line in the method of Light-Induced Drift^a. The equilibration decay curves of the spin isomers are then measured using a second probe CO₂ laser to monitor absorption spectral line intensities as a function of time. The conversion rates between isomers have been determined by fitting these decay curves to an exponential function. The experimental results and their interpretations will be presented.

^aF.Kh. Gelmukhanov, and A.M. shalagin, JETP Lett. 29, 711 (1979).