We have measured the dissociation threshold energy, D_0, of the six NO_2 isotopologues made with ^{14}N, ^{15}N, or ^{16}O or ^{18}O isotopes. These NO_2 isotopologues are cooled in a Helium supersonic jet at $T_{rot} \approx 2K$. For each isotopologue, the very dense set of bound rovibronic eigenstates is readily observed by LIF up to $J \approx 50$. Above D_0, the LIF signal disappear abruptly, within $0.03 cm^{-1}$ which is the average spacing between observed R_0 lines just below D_0. Note that resonances (lifetime $\approx 10^{-10}$ sec.) located above D_0 can be observed in absorption (by CRDS) but no fluorescence can be detected from these. The six measured D_0 range from 25128.56 cm$^{-1}$ for $^{16}O^{14}N^{16}O$, noted (646), to 25171.80 cm$^{-1}$ for (858). At the B.O. approximation, these six D_0 should have a common S. The shifts between these six D_0 are due to the ZPE shifts of NO_2 and NO. We have used and check the following relation:

$D_0(^{15}N^{16}O) = D_0(NO_2) + ZPE(^{15}N^{16}O) - ZPE(^{15}O^{14}N^{16}O)$

The ZPEs of the various NO and NO_2 isotopologues have been determined from Dunham parameters and, for NO_2, also by Canonical Perturbation Theory (CPT) using two PESs of NO_2. The NO_2 ZPE isotopologue shifts are estimated to be within $0.5 cm^{-1}$. The uncertainties on ZPE of NO are significantly smaller. The six values of D_0 are located within $0.5 cm^{-1}$ around 26051.17 cm$^{-1}$, in agreement with the ZPE uncertainties.