VIBRATIONAL PREDISSOCIATION OF THE HF-HCl COMPLEXES AT ν_{HF} = 3 LEVEL

<u>ZHENHONG YU</u>, PATRICK MEDLEY, BRENDAN CONNORS and WILLIAM KLEMPERER, *Harvard* University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts 02138.

The binary complex between HF and HCl at $\nu_{HF} = 3$ level, which has two stable forms: HF-HCl and HCl-HF, is studied recently by molecular beam laser induced fluorescence with an intracavity Ti-sapphire ring laser^{*a*} and the detection of HF $\Delta \nu = 2 \leftarrow 0$ emission. Similar to previously reported K = 0-0 (300000) \leftarrow (000000) transition of HF-HCl^{*b*}, the K = 1-0 subband seen at 11353.2 cm⁻¹ shows significant rotational dependence to the predissociation linewidths, varying from 1.3 to 2.4 GHz. The rotational *A* constant of 43.5 cm⁻¹ clearly indicates that the vibration-averaged angle between the HF axis and *a*-axis decreases over valence excitation, compared to 40.1 cm⁻¹ at $\nu_{HF} = 1$ level. Another weaker Q-branch band observed at 11351.7 cm⁻¹, with slightly narrower linewidths and little apparent *J* dependence, is tentatively assigned to the K = 1-0 (301000) \leftarrow (000000) combination transition of HCl-HF. The 2D vibration-averaged *ab initio* interaction potential of the complex predicts the HCl-HF form becomes more stable than HF-HCl through the valence excitation. The isotopic variation^c of predissociation lifetime for the observed transitions is still under investigation.

^aH. -C. Chang and W. Klemperer, J. Chem. Phys. 98, 2497(1993).

^bR. Mollaaghababa, H. -C. Chang and W. Klemperer, Can. J. Phys. 72, 963(1993).

^cG. T. Fraser and A. S. Pine, J. Chem. Phys. 91, 637(1989).