FTMW SPECTROSCOPY OF CH$_2$NC (\tilde{X}^2B_1) \sim A POSSIBLE CANDIDATE OF INTERSTELLAR MOLECULE

T. HIRAO, Institute for Astrophysics and Planetary Sciences, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.; H. OZEKI, Japan Aerospace Exploration Agency (JAXA), SMILES Mission Team, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba 305-8505 Japan.; S. YAMAMOTO, Department of Physics and Research Center for the Early Universe, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.

Cyanohydrocarbons are molecules of great importance in cold dark clouds such as TMC-1. Due to such interests, CH$_2$CN has been studied by experimental and theoretical means, and these extensive investigations lead unambiguous identification of the molecule in interstellar matter. It turns out that an isomer CH$_2$NC was rarely studied experimentally, probably because of unstablility of this species compared with CH$_2$CN.

We recently recorded Fourier transform microwave (FTMW) spectra of CH$_2$NC at the University of Tokyo. About 0.3\sim1 percent of CH$_2$NC, synthesized by an ordinary way, was diluted in the Ar or Ne buffer gas at the pressure of \sim1 atm. The mixed gas was injected into the Fabry-Pérot cavity via a pulsed nozzle, whose opening was synchronized with high voltage dc pulse to discharge to generate the aimed species. $N=1_{10}$-0$_{00}$ (\sim 22.2 GHz), 2$_{02}$-1$_{01}$, 2$_{12}$-1$_{11}$, and 2$_{11}$-1$_{10}$ (\sim 44.4 GHz) were recorded with well resolved fine and hyperfine structure. The molecular structure as well as a possibility of detection of this molecule will be discussed.