UV DISSOCIATION OF ETHYL ETHYNYL ETHER AND THE PRODUCTION OF THE KETENYL RADICAL (HCCO): A STUDY BY TIME-RESOLVED FTIR EMISSION SPECTROSCOPY

WILLIAM McNAVAGE, MICHAEL J. WILHELM, RAYMOND R. GROLLER and HAI-LUNG DAI, Department of Chemistry, The University of Pennsylvania, Philadelphia PA, 19104-6323, USA.

The ketenyl radical (HCCO) was generated through UV dissociation of Ethyl Ethynyl Ether (EEE), a precursor chosen for its unity quantum yield in the production of HCCO a, a radical that plays an important role in the oxidation of most C2 hydrocarbons and is a major intermediate in the formation of CO and CO$_2$ in the troposphere. IR emission from photoproducts following the EEE precursor dissociation was detected by sub-microsecond time-resolved Fourier transform emission spectroscopy. Two previously unknown vibrational modes, the ν_1 CH stretch and the ν_2 symmetric CCO stretch of HCCO have been identified and will be presented. The nascent product distribution from the EEE photo-dissociation will be discussed.