SENSITIVE FLUORESCENCE SPECTROSCOPY OF JET COOLED 15NO$_2$

E. A. VOLKERS, A. VREDENBORG, H. LINNARTZ, J. BULTHUIS, S. STOLTE, Laser Centre Vrije Universiteit, Department of Physical Chemistry, De Boelelaan 1083, NL 1081 HV Amsterdam, The Netherlands; R. JOST, Laboratoire de Spectrometrie Physique, Universite Joseph Fourier de Grenoble, BP 87, 38402 Saint Martin d’Heres Cedex, France.

A spectroscopic setup designed for high resolution spectroscopy of jet cooled 2O9N2O isotopologues is described with the aim to obtain high quality laboratory spectra for the study of the mass independent effect in this triatomic molecule. A special piezo valve allows operation at minimal gas consumption and time gated fluorescence spectroscopy is used as a highly sensitive detection technique. The performance of the setup is demonstrated on the first $A^2B_2 - X^2A_1$ rovibronic transitions of 15N16O$_2$ measured in a jet. The gas consumption is as low as 0.025 mg per cm$^{-1}$ spectral range. Special efforts have been made to extend applications to lower energies, using a LN$_2$ cooled germanium detector.