ANALYSIS OF THE QUASI-LINEARITY OF THE $\tilde{B} 1A_1$ STATE OF SiH$_2$ and SiD$_2$ RADICALS

Y. MURAMOTO, H. ISHIKAWA and N. MIKAMI, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.

Recently we have observed OODR transitions terminating to the $\tilde{B} 1A_1$ state of SiH$_2$ and SiD$_2$. The OODR spectra observed indicate the quasi-linear behavior in the \tilde{B} state based on the following features. Even or odd-v_2 levels exclusively appear in the OODR via an intermediate $K_a=$odd or even rotational level. This even/odd-v_2 progression is a typical pattern in the case of bent-linear transition. That is, SiH$_2$ acts as a linear molecule in the \tilde{B} state and its bending vibration is doubly degenerate. Thus there exist a vibrational angular momentum ℓ. The intensity pattern comes from a selection rule of a c-type transition; $\Delta(\ell - K_a) = \pm 1$. Bending excited levels exhibit negative g_{22}-values. This is an indication of the double minimum potential. If an electronic state of interest was doubly degenerate, there would be a possibility of Renner-Teller effect. However, the \tilde{B} state correlates to $^1\Sigma^-$ state in the linear configuration. Thus, this double minimum potential originates from the quasi-linearity. The height of the barrier to the linearity was calculated to be about 200 cm$^{-1}$. It was confirmed that there are only $\ell(K_a) = 0$ rotational levels in the $v_2 = 0$ level. This means that the $v_2 = 0$ level is located above the barrier to linearity. It is very probable considering the very low barrier height. In addition, the absolute value of the g_{22} constant rapidly decreases as the v_2-value increases. These observations strongly support the quasi-linearity of the \tilde{B} state. In the presentation, results of the vibrational analysis on the quasi-linearity will be discussed.

I. Tokue, private communication