FIRST OBSERVATION OF THE \tilde{B} 1A_1 STATE OF SiH $_2$ AND SiD $_2$ RADICALS BY OODR SPECTROSCOPY <u>Y. MURAMOTO</u>, H. ISHIKAWA and N. MIKAMI, *Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan*. Silylene (SiH₂) is a silicon analogue of methylene (CH₂). The number of spectroscopic studies on SiH₂ is much smaller compared with that on CH₂ is small. Until now, only the $\tilde{X}^{1}A_{1}$, $\tilde{A}^{1}B_{1}$, and $\tilde{a}^{3}B_{1}$ states have been experimentally investigated. Recently, energetics and equilibrium structure of the next low-lying $\tilde{B}^{1}A_{1}$ state was studied by high-level calculations by Yamaguchi *et al.*^a However, a corresponding electronic state has not yet been observed. In the course of our SEP spectroscopic study on highly excited vibrational levels of SiH₂, we have identified several bands that can be assigned as transitions to the \tilde{B} state for the first time. When a J=0 rotational level of the \tilde{A} state was used as an intermediate level of the OODR measurement, several vibronic bands of $1100-1200~{\rm cm}^{-1}$ interval were observed in the energy region of $28000-30100~{\rm cm}^{-1}$ above the \tilde{X} state. Based on a rotational selection rule and a predicted bending vibrational frequency, we assigned these bands as an odd- v_2 progression. This means that the SiH₂ in the \tilde{B} state behaves as a linear molecule. To confirm our assignment, it is necessary to observe OODR spectra via a $K_a=1$ rotational level. To avoid a difficulty in measuring desired OODR transitions due to a predissociation in the \tilde{A} state of SiH₂, an OODR spectroscopy of SiD₂ was also carried out. We have succeeded in measuring the OODR transitions to the \tilde{B} state of SiD₂ and determined the value of T_0 of SiD₂ to be 27214.11 cm⁻¹. Our observation on SiD₂ confirmed the quasi-linear behavior in the \tilde{B} state. Details of our observation will be presented in the paper. ^aY. Yamaguchi, T. J. Van Huis, C. D. Sherrill, H. F. Schaefer III *Theor. Chem. Acc.* 97 341 (1997).