$A^2\Pi$ ~ $X^2\Sigma^+$ INTERACTION PARAMETERS FOR $^{12}\mathrm{C}^{16}\mathrm{O}^+$, $^{13}\mathrm{C}^{16}\mathrm{O}^+$ AND $^{14}\mathrm{C}^{16}\mathrm{O}^+$ FROM DEPERTURBATION ANALYSES OF $A^2\Pi(v')\to X^2\Sigma^+(v'')$ BANDS

JOHN A. COXON, Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3, Canada; R. KĘPA, A. KOCAN and I. PIOTROWSKA-DOMAGALA, Atomic and Molecular Physics Laboratory, Institute of Physics, Univerity of Rzeszów, 35-310 Rzeszów, Poland.

Several $A^2\Pi \to X^2\Sigma^+$ emission bands of CO^+ , for which the A-state vibrational level is perturbed, have been recorded photographically. The well known $A(v'=0) \sim X(v^*=10)$ and $A(v'=5) \sim X(v^*=14)$ perturbations between the $A^2\Pi$ and $X^2\Sigma^+$ states of $^{12}C^{16}O^+$, previously analysed by Coxon and Foster^a, have been reinvestigated by analysis of the 0-2 and 5-0 bands. The standard deviations of the least squares fits are typically about $0.02~{\rm cm}^{-1}$. Similarly, the $A(v'=1) \sim X(v^*=11)$ interaction in $^{13}C^{16}O^+$, first identified by Jakubek^b in an analysis of the 0-1 band of the $B^2\Sigma^+ - A^2\Pi$ system, has been studied by a deperturbation analysis of the rotational structure in the $A^2\Pi(v'=1) \to X^2\Sigma^+(v''=0)$ band. For $^{14}C^{16}O^+$, the corresponding $A(v'=2) \sim X(v^*=11)$ interaction has been observed for the first time by analysis of the 2-0 and 2-1 bands of the A-X system. The expected isotopic self-consistency of the interaction parameters α and β from individual bands of the three isotopomers is discussed.

^aJ. A. Coxon and S. C. Foster, J. Mol. Spectrosc. 93, 117 (1982).

^bZ. Jakubek, J. Mol. Spectrosc. 131, 207 (1988).