A mass spectrometric depletion measurement has been performed for the NO₂ molecule in its bound region as well as above its gas phase dissociation threshold. In the bound region (17700 - 18300 cm⁻¹) that is known to be vibronically chaotic transitions are broadened and blue-shifted relative to their gas-phase counterparts. The spectrum is fitted relatively well by setting all shifts and width equal to 7 cm⁻¹. Modest dispersion of these values are consistent with quantum chaos in NO₂. Relaxation is dominated by interaction of NO₂ with its non-superfluid helium nearest neighbors. In the region above the gas-phase dissociation threshold (25125 - 30000 cm⁻¹) the mass depletion spectrum reveals no fine structure. The fast relaxation due to the interaction with the superfluid helium environment prevents photodecomposition of the NO₂ molecule over the entire range we explored.

---