High resolution infrared emission spectra of gaseous ZnH$_2$ and ZnD$_2$ have been recorded with a Fourier transform spectrometer. The molecules were generated in an emission source that combines an electrical discharge with a high temperature furnace. The vibration-rotation emission spectra of ZnH$_2$ and ZnD$_2$ were recorded in the 1200-2200 cm$^{-1}$ region at an instrumental resolution of 0.01 cm$^{-1}$. The antisymmetric stretching fundamental bands, 001-000, of 64ZnH$_2$ and 64ZnD$_2$ were observed near 1889.4 cm$^{-1}$ and 1371.6 cm$^{-1}$, respectively, and for the minor isotopes of zinc, 60Zn and 68Zn, the band origins were shifted by approximately 1-2 cm$^{-1}$. Preliminary analysis of the spectra resulted in r_0 values of 1.535271(1) Å and 1.531833(9) Å for 64ZnH$_2$ and 64ZnD$_2$, respectively. Several hot bands of ZnH$_2$ involving ν_1, ν_2 and ν_3 have also been observed, and analysis of these bands will lead to an equilibrium structure (r_e) for ZnH$_2$. The results will be presented at the symposium.