SUBMILLIMETER WAVE SPECTRA OF NCS

A. MAEDA, H. HABARA^a, <u>T. AMANO</u>, Institute for Astrophysics and Planetary Sciences, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Japan.

Rotational spectra of NCS in the excited bending vibrational states have not been analyzed in detail, because of difficulty in analysis due to large Renner - Teller effect and anharmonic interactions. We have extended the observation of the pure rotational spectra of NCS in the $v_2 = 1$ as well as in the $X^2\Pi$ ground state up to J = 53.5 in the submillimeter wave region. For the ground state, the analysis was straightforward. The measured transition frequencies were fit to a standard effective Hamiltonian for ²II vibronic states, and the improved molecular constants including the higher order centrifugal distortion constants were obtained. The $v_2 = 1$ vibronic state splits into four vibronic sub-states, ${}^{2}\Delta_{5/2}$, ${}^{2}\Delta_{3/2}$, $\mu^{2}\Sigma$ and $\kappa^{2}\Sigma$. As a first attempt, the Δ and Σ states were fitted separately to effective Hamiltonians. The least square fittings converged by including various effective parameters concerned with the *P*-type doubling. However, the physical significance of these higher order parameters is not clear. It is found that the spin rotation coupling constant, γ , and the Λ -type doubling constants, p, q, are significantly different from those for the ground states.

An isotopic species, NC³⁴S, in the $X^2 \Pi_{3/2}$ state has also been measured and r_0 structure is derived to be $r_0(NC) = 1.1805(1)$ Å and $r_0(CS) = 1.63212(7)$ Å.

^aNASDA postdoctral fellow