NEAR INFRARED SPECTROSCOPY OF CARBON DIOXIDE: 18O12C18O LINE POSITIONS

CHARLES E. MILLER, Department of Chemistry, Haverford College, Haverford, PA 19041 USA; LINDA R. BROWN, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA.

High-resolution near infrared 4000 - 9000 cm$^{-1}$ spectra of carbon dioxide have been recorded using the McMath-Pierce Fourier transform spectrometer at the Kitt Peak National Solar Observatory. Spectroscopic constants have been determined for 53 different vibrational states of the 18O12C18O isotopologue, including 8 vibrational states for which laboratory spectra have not previously been reported. Calibration using the 2-0 band of CO near 4200 cm$^{-1}$ and the ($\nu_1 + \nu_6$) combination band of C$_2$H$_2$ near 6500 cm$^{-1}$ provides absolute line position accuracies of 2×10^{-5} cm$^{-1}$ (RMS) for strong, isolated transitions throughout the observed range. Fits with RMS errors less than 3.8×10^{-5} cm$^{-1}$ have been obtained for the 20013 \rightarrow 00001, 20012 \rightarrow 00001, and 20011 \rightarrow 00001 bands and RMS errors less than 6×10^{-5} cm$^{-1}$ have been obtained for the 30014 \rightarrow 00001, 30013 \rightarrow 00001, 30012 \rightarrow 00001, and 00031 \rightarrow 00001 bands. The new line list satisfies the line position accuracies required for the next generation of CO$_2$ remote sensing instruments, improves the capability of solar-viewing spectrometers to retrieve precise column CO$_2$ measurements, and provides a secondary frequency standard in the NIR.\(^a\)

\(^a\)Part of the research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.