We have recorded the vibration-rotation spectra of gaseous MgH and MgH_2 in emission using a furnace-discharge source. The molecules were generated at 650°C and 333 mA discharge current with magnesium and a mixture of argon and hydrogen gases. The recorded spectra contained several emission bands, as well as the absorption of atmospheric H_2O. The highest signal-to-noise ratio for MgH lines was about 200. Three vibrational bands, $v=1$-0 to $v=3$-2, for ^{24}MgH and two vibrational bands for ^{25}MgH and ^{26}MgH were observed in the $^2\Sigma^+$ ground electronic state. The analysis of the infrared data combined with our previous data on the B'-X electronic transition will lead to an improved potential energy curve for the ground state using a direct-potential-fit approach. In addition to MgH, we found the antisymmetric stretching mode (ν_2) of $^{24}\text{MgH}_2$ and three hot bands involving ν_2 and ν_3 in our spectrum. The bands were rotationally analyzed and the spectroscopic constants were determined. The MgH_2 molecule has a linear structure with an $R_0\text{Mg-H}$ bond length of 1.703327(3) Å.