Potential energy surfaces are obtained in the framework of the supermolecule approach by using density functional theory and basis sets optimized in generalized gradient approximation exchange-correlation calculations supplemented by bond functions placed at the midpoint of the van der Waals bond. They are compared to surfaces obtained using single and double excitation coupled-cluster theory with noniterative treatment of triple excitations CCSD(T) and correlation-consistent basis sets supplemented by bond functions. Bonding properties and Vertical excitation electronic spectra of N_2-He and CO^+-He van der Waals molecules will be presented and compared to recent theoretical results.