The B ($\frac{1}{2}$) and C ($\frac{3}{2}$) ion-pair excited states of XeF are coupled by the rotational Hamiltonian, producing perturbations in the rotational structure of $B \rightarrow X$ (Σ^+) transitions involving v' levels < 5. A number of $v' - v''$ bands in the $B \rightarrow X$ emission spectrum of the single isotopomer 136Xe19F are analyzed by a deperturbation model to yield improved spectroscopic descriptions of the low-v regions of the B and C states. The C state lies 797 cm$^{-1}$ below the B state, with $R_e = 2.473$ Å. The electronic perturbative coupling element for B–C interactions is 6% below the simple Hund's case c-based prediction and just 3% greater than an estimate obtained from a more elaborate case-a approach.