NONRESONANT TWO-PHOTON MASS-ANALYZED THRESHOLD IONIZATION AND ZERO KINETIC ENERGY PHOTOELECTRON SPECTROSCOPY OF KETENE

S. WANG, Y. J. SHI, B. SIMARD, Z. J. JAKUBEK, M. BARNETT, Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada; C-P. LIU, Department of Chemistry, National Tsing Hua University, 101, Sec 2 Kuang-Fu Road, Hsinchu, Taiwan, 30043, R. O. C.; K. MÜLLER-DETHLEFS, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK.

The rotationally resolved nonresonant two-photon mass analyzed threshold ionization (MATI) spectra and zero kinetic energy (ZEKE) photoelectron spectra of CH$_2$CO$^+$ and CD$_2$CO$^+$ are presented. The MATI and ZEKE spectra of CH$_2$CO$^+$ are dominated by the totally symmetric modes ν_1 (C=C stretch) and ν_2 (C=O stretch), with weaker excitation of ν_3 (CH$_2$ scissor), while those of CD$_2$CO$^+$ are dominated by approximately equally intense ν_2, ν_5, and ν_4. This is consistent with the theoretical calculations of Takeshitaa, which indicate a strong coupling of ν_2 and ν_4 modes of CD$_2$CO$^+$ in the ground state. In addition, weak excitations to the nontotally symmetric vibrations ν_5 (CH$_2$ wag), ν_6 (C=C=O linear bend) and ν_9 (C=C=O linear bend) are also observed in the MATI spectra of both isotopomers. Rotational structure is dominated by very strong $\Delta K_a=\pm 1$ manifolds with two orders of magnitude weaker $\Delta K_a=\pm 3$ features. Analysis of the ZEKE spectra provides the ionization potentials (77538.8±2 cm$^{-1}$ for CH$_2$CO and 77533.7±2 cm$^{-1}$ for CD$_2$CO) and rotational constants for the ground states of both ketene cations.