Optimized structures and harmonic vibrational frequencies have been determined for cyano phosphinogen (HPCN) and the corresponding singly charged cation at the B3LYP/6-311++g(2df,p) level of theory. Total energies have also been determined at the G2 level of theory in order to predict the ionization energy of HPCN. In the ground state of HPCN$^+$, the molecule is bent (C2 symmetry) and the electronic state is of $^1\text{A}'$ symmetry. The lowest-lying triplet state of the cation ($^3\text{A}''$) lies approximately 1 eV above the singlet state and the molecule is also bent in this state (C2 symmetry). The energy ordering of states in the cation is unexpected by analogy to HNCN$^+$ whose ground state is of triplet spin degeneracy. Also, the triplet state of HNCN$^+$ is linear, unlike HPCN$^+$. Structures, harmonic frequencies and ionization energies will be presented for the cyano phosphinogen system and discussed in comparison the cyano amidogen system.