HIGHLY PREDISSOCIATIVE LEVELS OF THE CH$_3$S A^2A_1 STATE DETERMINED WITH DEGENERATE FOUR-WAVE MIXING

YUAN-PERN LEE and YOSHIYUKI MATSUDA, Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013.

We have determined highly predissociative levels of the A^2A_1 state of CH$_3$S in a supersonic jet with degenerate four-wave mixing (DFWM) technique. The highest level observed lies 4265 cm$^{-1}$ above the zero-point-energy level, much greater than corresponding values of 2979 cm$^{-1}$ observed by fluorescence depletion spectroscopy and 1490 cm$^{-1}$ by laser-induced fluorescence. Unlike in fluorescence spectra, relative intensities of lines in DFWM spectra closely reflect their Franck-Condon factors; vibronic assignments are thus more straightforward. A new progression involving excitation of the CH$_3$ stretching mode is identified, and several lines in the range 1290-1410 cm$^{-1}$ above the origin may be assigned to the CH$_3$ deformation (ν_5) and the first overtone of CH$_3$ rocking ($2\nu_6$) modes. Observed vibrational wave numbers are consistent with theoretical predictions.