CARS AND INFRARED STUDIES OF THE ν_1, ν_2 AND ν_4 BANDS OF $^{34}\text{S}^{18}\text{O}_3$

TONY MASIELLO, JEFFREY BARBER, ENGELENE t.H. CHRYSOSTOM, JOSEPH W. NIBLER, Department of Chemistry, Oregon State University, Corvallis, OR 97331; ARTHUR MAKI, 15012 24th Ave. S. E. Mill Creek, WA 98012; ALFONS WEBER, National Science Foundation, Arlington, VA 22230 and National Institute of Standards and Technology, Gaithersburg, MD 20899; THOMAS A. BLAKE, ROBERT L. SAMS, Pacific Northwest National Laboratory, Richland, WA 99352.

We are engaged in a comprehensive investigation of the spectroscopic properties of sulfur trioxide, an important participant in reactions in the upper atmosphere. The fundamental modes and several hot bands of the isotopic variants ($^{32}\text{S}^{18}\text{O}_3$, $^{34}\text{S}^{16}\text{O}_3$, and $^{34}\text{S}^{18}\text{O}_3$) have been investigated using high resolution infrared spectroscopy and coherent anti-Stokes Raman scattering. For all isotopic variants, the Raman-active symmetric stretching mode ν_1 shows complex Q-branch patterns due to indirect Coriolis couplings, l-resonances, and Fermi resonances with dark ν_2, ν_6 combination/overtone levels. Essential to modeling the interactions of these levels with ν_1 is the understanding of the fundamental vibrations that make up these levels. The analysis of the ν_2, ν_6 infrared active fundamental vibrations of $^{34}\text{S}^{18}\text{O}_3$ will be presented, along with efforts to model the complex ν_1 CARS spectrum using information derived from studies of hot bands involving ν_2 and ν_6.