THE ν_2 BANDS OF BrNO$_2$ (NITRYL BROMIDE) AROUND 787 CM$^{-1}$

F. K. TCHAN A, J. ORPHAL, I. KLEINER, CNRS, Laboratoire de Photophysique Moléculaire, 91405 Orsay Cedex, France; B. REDLICH, Institut für Anorganische Chemie, Universität Münster, 48149 Münster, Germany; D. SCHEFFLER, H. WILLNER, Institut für Anorganische Chemie, Universität Duisburg, 47048 Duisburg, Germany; R. MBIAKE, Centre de Physique Atomique Moléculaire et Optique Quantique, Université de Douala, Cameroun; O. BOUBA, Université de Ngaoundéré, Cameroun.

Nitryl bromide, BrNO$_2$, is produced in the marine troposphere by heterogeneous reactions between nitrogen oxides and bromine containing aerosols.a Its peak concentrations reach values of several 10^7 cm$^{-3}$. In polluted coastal areas, therefore, BrNO$_2$ is an important species in the release of bromine from the ocean into the atmosphere.b

The ν_2 fundamental bands of 79BrNO$_2$ and 81BrNO$_2$, located around 787 cm$^{-1}$ (12.7 μm), were recorded using a high-resolution Fourier-transform infrared spectrometer. A total of nearly 5000 transitions with $J \leq 80$ and $K_a \leq 30$ were reproduced using a Watson-type A-reduced Hamiltonian with a root-mean-square deviation of better than 5×10^{-4}cm$^{-1}$. Rotational and centrifugal distortion constants for the ν_2 states have been determined, as well as an improved set of ground state constants for both isotopomers. Due to their sharp Q branches falling into an atmospheric window, the ν_2 bands might be useful for future attempts to detect atmospheric BrNO$_2$.