BROADENING AND SHIFT COEFFICIENTS IN THE ν_3 BANDS OF $^{12}\text{C}^{16}\text{O}_2$ AND $^{13}\text{C}^{16}\text{O}_2$

M. A. H. SMITH, C. P. RINSLAND, Atmospheric Sciences, NASA Langley Research Center, Mail Stop 401A, Hampton, VA 23681-2199; D. CHRIS BENNER, V. MALATHY DEVI, Department of Physics, The College of William and Mary, Box 8795, Williamsburg, VA 23187-8795.

In a previous studya we had reported N$_2$-broadening and pressure-induced shift coefficients for 34 rovibrational transitions in the $^{12}\text{C}^{16}\text{O}_2$ ν_3 fundamental band near 4.3 μm. These parameters were determined from spectra recorded with the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory on Kitt Peak, Arizona. We now report similar measurements of N$_2$-broadening and shifts for transitions up to $J'' = 56$ in the $^{13}\text{C}^{16}\text{O}_2$ ν_3 fundamental band, plus determinations of N$_2$-broadening coefficients in the $^{13}\text{C}^{16}\text{O}_2$ $\nu_2 + \nu_3 - \nu_2$ hot band and the $^{13}\text{C}^{16}\text{O}^{18}\text{O} \nu_3$ fundamental band. We also made new measurements of N$_2$-broadening and pressure-induced shift coefficients for rovibrational transitions up to $J'' = 46$ in the $^{12}\text{C}^{16}\text{O}_2$ ν_3 fundamental band. These results were obtained from simultaneous analysis of five absorption spectra using a multispectrum nonlinear least-squares techniqueb. A 4.08 cm sample cell at room temperature was used to record all of the spectra at 0.003 cm$^{-1}$ resolution with the McMath-Pierce FTS. This data set includes one low pressure (0.15 Torr) spectrum obtained with a 90% 13C-enriched CO$_2$ sample and four spectra of lean mixtures of the same 13CO$_2$ sample in N$_2$. Total pressures of the mixtures were between 101 Torr and 464 Torr. Because of the isotopic sample used, the ν_3 fundamental bands of 12CO$_2$ and 13CO$_2$ appeared together in the same spectra, and we were able to obtain a consistent set of line parameters for both molecules. The present measurements represent the first experimental determination of N$_2$-broadening and pressure-induced shift coefficients in isotopic bands of CO$_2$ in the 4.3 μm region. The results obtained for the various bands will be compared with each other, with the values in the HITRAN databasec, and with available values reported in the literature.