The novel universal technique for impurities embedding directly into solid He we recently elaborated allows to achieve the guest particles concentrations as high as 10^{19} cm$^{-3}$ (as small clusters suspended in a solid) and about 10^{16} cm$^{-3}$ (as solitary isolated molecules or atoms) under a sample growth rate up to 3 mm per minute. Contrary to the liquid He droplets technique we can investigate the temperature and pressure dependencies, whereas the procedure of a sample preparation and replacement is more simple than for matrix-isolation by p-H$_2$. The promises for spectroscopic applications of the new matrix and the first experimental results will be discussed.
