AN ANALYSIS OF THE FIRST HIGH RESOLUTION FTS INFRARED SPECTRA OF F$_2$BOH: THE ν_8, ν_9, 2ν_9 AND ν_4 BANDS.

A. PERRIN, J.-M. FLAUD, Laboratoire de Photophysique Moléculaire, CNRS, Université Paris Sud, Campus d’Orsay, Bat 350, 91405 Orsay Cedex, France; H. BÜRGER, D.COLLET, Anorganische Chemie, FB 9, Universität-Gesamthochschule, D-42097 Wuppertal, Germany; J.DEMAISON, Laboratoire PhLAM, CNRS, Université de Lille I, Bat. P5, 59655 Villeneuve d’Ascq Cedex, France.

The reactive F$_2$BOH molecule was first detected by microwave spectroscopy a, and very recently observed by matrix IR spectroscopy b. We report here the first high resolution infrared study of F$_2$BOH. F$_2$BOH has been produced in a slow flow of (11B and natural) BF$_3$ through a glass tube filled of some specks of quartz (all using stainless steel equipment) on which water had been deposited. The IR spectrum has been recorded from 400 cm$^{-1}$ to 1600 cm$^{-1}$ at high resolution (2-3 x 10$^{-3}$ cm$^{-1}$) using the Wuppertal Bruker 120 HR interferometer equipped with a cell of 1.2 m path length. In addition, ground state parameters have been determined from recent microwave measurements performed in Lille c. Among the recorded infrared bands, two c-type out-of-plane fundamental bands ν_8 (BF$_3$ bend) and ν_9 (OH torsion) located at 684.16 cm$^{-1}$ and 522.86 cm$^{-1}$, respectively, were analysed using a simple Watson-type Hamiltonian. The a/b type hybrid 2ν_9 and ν_4 bands centered at 1042.87 and 961.49 cm$^{-1}$ were also studied. The analysis of ν_4 (OH bending mode) was complicated by the existence of “classical” vibrational rotational resonances linking the 41 energy levels with those of the 7292 dark overtone state. More surprising is the fact that both in the 2ν_9 and ν_4 bands, the P- and R-lines exhibit a regular doublets structure (of about 0.005 and 0.003 cm$^{-1}$ respectively) which indicates the existence of large amplitude motions in the F$_2$BOH molecule.

cJ. Demaison, J.F.D’Eu et al. private communication