FIRST OBSERVATION OF THE SPIN-ORBIT INTERACTION BETWEEN THE $\tilde{X} \, ^1A_1$ AND THE $\tilde{a} \, ^3B_1$ STATES of SiH$_2$ BY STIMULATED EMISSION PUMPING SPECTROSCOPY

H. ISHIKAWA, Y. MURAMOTO, and N. MIKAMI, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.

The energy separation and order between the triplet and the singlet electronic states have been one of the central issues of SiH$_2$ radical from both chemical and spectroscopic points of view. However, any rotationally and/or vibrationally resolved observation of the triplet ($\tilde{a} \, ^3B_1$) state has not yet been reported. Since the \tilde{a} state is considered to be located $\sim 7000 \, \text{cm}^{-1}$ above the singlet ($\tilde{X} \, ^1A_1$) state, it is expected that an effect of the singlet-triplet interaction appears among highly excited vibrational levels of the \tilde{X} state. Thus, we have carried out the stimulated emission pumping (SEP) spectroscopy of SiH$_2$ in the vibrational energy region up to 10000 cm$^{-1}$. In this paper, we will report an observation of a small but a definitive perturbation due to the singlet-triplet interaction in the SEP spectrum.

We have observed fifty-one vibrational levels in the vibrational energy region of 4800–10000 cm$^{-1}$. Due to strong $1\nu_1:2\nu_2$ Fermi and $2\nu_1:2\nu_3$ Darling-Dennison resonances, vibrational levels having the same polyad quantum number, $P = 2\nu_1 + \nu_2 + 2\nu_3$, construct polyad structures. The vibrational levels observed belong to polyads of $P = 5 – 10$. In the case of $P \leq 9$, all the vibrational energies observed were fitted very well by the effective Hamiltonian model in which the above resonances were considered. In the case of the $P = 10$ polyad, however, an unexpected splitting of the band was observed. It was confirmed that this splitting is due to the spin-orbit interaction between the \tilde{X} and the \tilde{a} states based on the rotational dependence of this perturbation. The internal energy of the triplet state observed was about 9645 cm$^{-1}$ measured from the (000) level of the \tilde{X} state. This level is tentatively assigned as (030), based on the theoretical calculationa. Details of the analysis will be discussed at the presentation.