THEORETICAL LINE STRENGTHS AND TRANSITION MOMENTS IN THE $\tilde{A} 2B_1 \leftarrow \tilde{X} 2A_1$ ELECTRONIC TRANSITION OF NH$_2$

P. R. BUNKER, Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada; W. P. KRAEMER, Max Planck Institute for Astrophysics, Postfach 1523, D-85740 Garching, Germany; PER JENSEN, FB 9 - Theoretische Chemie, Bergische Universität, D-42097 Wuppertal, Germany.

In a recent publication, Kawakita et al.a call for theoretical calculations of transition moments and line strengths associated with the $\tilde{A} 2B_1 \leftarrow \tilde{X} 2A_1$ electronic transition of NH$_2$; they need such data in order to improve their analysis of cometary spectra involving this electronic transition. We have used the RENNER program systemb to provide the results required. The RENNER calculations are based on \textit{ab initio} calculations of the potential energy surfaces and the electronic dipole moments and transition moments.c We have optimized the potential energy surfaces in a least-squares fit to experimentally derived term values.

