TWO-ROTOR CALCULATIONS FOR MOLECULES WITH C_2 OR C_s SYMMETRY

PETER GRONER, Department of Chemistry, University of Missouri - Kansas City, Kansas City, MO 64110.

An effective rotation-internal motion Hamiltonian for molecules with two periodic internal motions a has been applied recently to dimethyl ether b and acetone c whose equilibrium structures have C_{2v} symmetry. The program used to analyze their rotational spectra has been modified to allow treatment of two-rotor molecules with lower symmetry (equivalent rotor problems for molecules with C'_2 and C_2 symmetry and nonequivalent rotor problems with and without a plane of symmetry). It has been used to analyze the microwave literature data of CH$_3$SSCH$_3$ (C_2 symmetry, ground state) d, CH$_3$CHFCH$_3$ (C_4 symmetry, ground and two excited states) e, and CH$_3$OSiH$_3$ (nonequivalent, C_4 symmetry, ground state) f. The experimental data have been fitted to experimental precision by the nonlinear least-squares method to determine spectroscopic parameters (rotational constants, centrifugal distortion constants and tunneling parameters). Applications to other molecules are in progress.