FTMW/CVI: FOURIER TRANSFORM MICROWAVE / COHERENCE SPECTROSCOPY WITH VIRTUAL INSTRUMENTS

JENS-UWE GRABOW, Lehrgebiet Physikalische Chemie A, Institut für Physikalische Chemie und Elektrochemie, Callinstrasse 3-3a, Universität Hannover, D-30167 Hannover.

Modern Fourier transform microwave (FTMW) spectroscopy, first implemented as an impulse excitation technique in a steady gas-waveguide apparatus\(^a\), started only a quarter of a century ago. Soon after, the method was supplemented for special applications, e.g. Stark-effect\(^b\), double resonance\(^c\), and 2D\(^d\) spectroscopy. The subsequent implementation of the technique in a supersonic jet-resonator apparatus\(^e\) was followed by similar developments, i.e. Stark-effect\(^f\), double resonance\(^g\), laser ablation\(^h\), and DC-discharge\(^i\). Automation\(^j\) along with the “coaxially oriented beam-resonator arrangement”\(^k\) (COBRA) has greatly increased efficiency, resolution, and sensitivity of current FTMW spectrometers.

We present the implementation of a complete COBRA-FTMW spectrometer featuring the capabilities given above. The entire experiment is operated, either interactively or automatically, by a graphical user interface (GUI)-based program which is capable of waveguide and resonator applications. Developed in the C programming language, while following the concept of virtual instruments (VI), the software can co-operate with a wide variety of PCI and IEEE hardware components to build the instrument. Only one application specific logic circuit, which will also be presented, is needed.