The spectroscopy and dynamics of I₂-Ne have been re-examined using OODR and fluorescence depletion techniques. Action spectra for I₂(B, ν)-Ne, detected by monitoring the I₂(B, ν-1) predissociation fragments, show that the Δν=1 predissociation channel is suppressed for levels above ν=33, and closed for ν>36. From these data we obtained a revised estimate for the dissociation energy for I₂(B)-Ne of D₀=57.5 cm⁻¹.

Action spectra for I₂(B, ν=34)-Ne, detected by monitoring I₂(B, ν=33) fragments, revealed a progression of nine intermolecular vibrational levels that had not been observed previously. These levels have been assigned to T-shaped or linear geometries of I₂(B, ν=34)-Ne. Assignments were based on characteristic vibrational distributions exhibited by the I₂(B, ν-Δν) predissociation fragments. Fluorescence depletion measurements show that all of the bands in the action spectrum originate from a common ground state level. Furthermore, the one atom cage effect fluorescence from I₂(B)-Ne can be depleted by transitions from the zero-point level of I₂(X)-Ne. These observations show that the ground state wavefunction is delocalized, sampling both the T-shaped and linear configurations of the complex.

“Work supported by National Science Foundation.”