SPECTROSCOPY AND DYNAMICS OF I2-Ne^a

GALINA KERENSKAYA, AMY BURROUGHS, MICHAEL C. HEAVEN, Department of Chemistry, Emory University, Atlanta, GA 30322.

The spectroscopy and dynamics of I₂-Ne have been re-examined using OODR and fluorescence depletion techniques. Action spectra for I₂(B, ν)-Ne, detected by monitoring the I₂(B, ν -1) predissociation fragments, show that the $\Delta \nu$ =-1 predissociation channel is suppressed for levels above ν =33, and closed for ν >36. From these data we obtained a revised estimate for the dissociation energy for I₂(B)-Ne of D₀=57.5 cm⁻¹.

Action spectra for $I_2(B, \nu=34)$ -Ne, detected by monitoring $I_2(B, \nu=33)$ fragments, revealed a progression of nine intermolecular vibrational levels that had not been observed previously. These levels have been assigned to T-shaped or line ar geometries of $I_2(B, \nu=34)$ -Ne. Assignments were based on characteristic vibrational distributions exhibited by the $I_2(B, \nu-\Delta\nu)$ predissociation fragments. Fluorescence depletion measurements show that all of the bands in the action spectrum originate from a common ground state level. Furthermore, the one atom cage effect fluorescence from $I_2(B)$ -Ne can be depleted by transitions from the zero-point level of $I_2(X)$ -Ne. These observations show that the ground state wa vefunction is delocalized, sampling both the T-shaped and linear configurations of the complex.

^aWork supported by National Science Foundation.