DETERMINATION OF THE 0^+_g PURE LONG RANGE POTENTIAL CURVE OF Rb$_2$ AND Cs$_2$; APPLICATION TO ULTRACOLD MOLECULES FORMATION

R. F. GUTTERRES, C. AMIOT, O. DULIEU and F. MASNOU-SEEUWS, Laboratoire Aimé Cotton, Bât 505, Campus d’Orsay 91405, Orsay Cedex, France.

This work presents an accurate study of the $0^+_g (P_{3/2})$ pure long range electronic state of the 87Rb(5S)-87Rb(5P$_{3/2}$) and 133Cs(6S)-133Cs(6P$_{3/2}$) molecular systems. Generalized simulated annealing method was used in order to reduce the high resolution spectral data provided by photoassociative spectroscopy of ultra cold 87Rb and 133Cs atoms. The analysis has allowed the determination of the effective dispersion parameters, the chemical exchange energy contribution as well as the dissociation energy concerning the analytical potential representation of the $0^+_g (P_{3/2})$ state for both, Rb$_2$ and Cs$_2$, molecules. A detailed comparison with the potential curves obtained through RKR procedure is performed, and the consequences for ultracold molecules formation rates are discussed.