INVESTIGATION OF NUCLEAR SPIN CONVERSION OF METHANE IN SOLID HYDROGEN

<u>MIZUHO FUSHITANI</u> and TAKAMASA MOMOSE, Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.

We have studied nuclear spin conversion of CH₄ and CD₄ trapped in solid H₂ and solid D₂ by Fourier-transform infrared spectroscopy. It has been shown that the rotational quantum number J of methane is still a good quantum number in solid hydrogen. The effective rotational constant has been found to be about 90 % of the gas phase value. The vibration-rotation absorption of both CH₄ and CD₄ exhibited time-dependent intensity changes at liquid He temperatures. These changes are interpreted to be a result of the $I = 1 \rightarrow I = 2$ nuclear spin conversion which accompanies the $J = 1 \rightarrow J = 0$ rotational relaxation. The conversion rate is on the order of 10^{-3} min⁻¹, but the rate depends on the temperature of the crystal. Mechanisms of the nuclear spin conversion in solid hydrogen will be discussed.